Abstract

Ceramic YBa2Cu4O8 samples composed of sub-micron size grains are considered as random Josephson-coupled networks of 0 and π junctions, and they show successive phase transitions. The first transition occurs inside each grain at Tc1 and the second transition occurs among the grains at Tc2 (> Tc1), where a negative divergence of nonlinear susceptibility is found. This critical phenomenon at Tc2 suggests the onset of the chiral-glass phase, as predicted by Kawamura and Li. We measured the temperature dependencies of the current-voltage characteristics of the samples and derived the linear and nonlinear resistivities. With decreases in temperature, linear resistivity decreased monotonously and remained at a finite value at temperatures less than Tc2, while nonlinear resistivity diminished continuously for temperatures moving towards Tc2. These results are consistent with the theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call