Abstract

Shear and bulk viscosities of liquid water and argon are evaluated from first-principles in the density functional theory (DFT) framework, by performing molecular dynamics simulations in the NVE ensemble and using the Kubo-Greenwood equilibrium approach. The standard DFT functional is corrected in such a way to allow for a reasonable description of van der Waals effects. For liquid argon, the thermal conductivity has been also calculated. Concerning liquid water, to our knowledge, this is the first estimate of the bulk viscosity and of the shear-viscosity/bulk-viscosity ratio from first-principles. By analyzing our results, we can conclude that our first-principles simulations, performed at a nominal average temperature of 366 to guarantee that the systems are liquid-like, actually describe the basic dynamical properties of liquid water at about 330K. In comparison with liquid water, the normal, monatomic liquid Ar is characterized by a much smaller bulk-viscosity/shear-viscosity ratio (close to unity) and this feature is well reproduced by our first-principles approach, which predicts a value of the ratio in better agreement with experimental reference data than that obtained using the empirical Lennard-Jones potential. The computed thermal conductivity of liquid argon is also in good agreement with the experimental value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.