Abstract

Pulsed field gradient NMR is a powerful method for the measurement of diffusion coefficients in liquids and solids and has begun to attract much attention in the ionic liquids field. However, aspects of the methodology as traditionally applied to solutions may not be uniformly applicable in these more viscous and chemically complex systems. In this paper we present data which shows that the Pulsed Gradient Spin Echo (PGSE) method in particular suffers from intrinsic internal gradients and can produce apparent diffusion coefficients which vary by as much as 20% for different 1H nuclei within a given molecule--an obvious anomaly. In contrast, we show that the Pulsed Gradient Stimulated Echo method does not suffer from this problem to the same extent and produces self-consistent data to a high degree of accuracy (better than 1%). This level of significance has allowed the detection, in this work, of subtle mixing effects in [C(3)mpyr][NTf(2)] and [C(4)mpyr][NTf(2)] mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.