Abstract

Entry vehicle heat shields designed for entry into the atmosphere of the outer planets are usually made of carbonaceous material such as carbon-phenolic ablator. Ablative injection of this material is an important mechanism for reducing the heat at the surface of the entry vehicle. Conductive transport properties in the shock layer are important for some entry conditions. The kinetic theory of gases has been used to calculate the transport properties for 17 gaseous species obtained from the ablation of carbon-phenolic heat shields. Results are presented for the pure species and for the gas mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.