Abstract

We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes-Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld and using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.