Abstract
Abstract We performed the experimental studies on La1-xCexMnO3 to investigate transport properties and field-induced transport mechanisms in electronic doped perovskite films. La1-xCexMnO3 films exhibit significant metal-insulator transition, which can be modulated by the doping ratio of Ce. Resistance-temperature curves indicate that the magnetic domains and electron-electron scattering mainly contribute to the transport mechanism in the low temperature region, while the hopping conduction of small polaron becomes the dominating factor at the high temperatures. Laser irradiation is found to induce the shift of metal-insulator transition temperature towards the lower temperature region due to the coexistence of ferromagnetic (FM) metallic phase and paramagnetic (PM) insulating phase in La1-xCexMnO3 films. The higher laser intensity gives rise to more significant change in resistance. Furthermore, magnetoresistance effect can be affected by different doping ratios of Ce in La1-xCexMnO3 films because of the MIT transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.