Abstract

The pore-forming protein porin has been isolated from rat heart mitochondria and reconstituted in phospholipid vesicles of different composition. Rapid release of anions, cations and non-charged molecules has been demonstrated from the proteoliposomes but not from the protein-free liposomes. In spite of its higher molecular mass and charges, the movement of ATP was almost as fast as that of inorganic phosphate. Polyanion (1:2:3 copolymer of methacrylate/maleate/styrene), a potent inhibitor of porin residing in the mitochondrial contact sites decreased the solute movements but did not completely block any of the investigated transport processes (phosphate, chloride, ATP). Alterations of the lipid environment had significant effect: an increase in the proportion of soybean phospholipids to egg yolk phospholipids resulted in a decrease in the amount of transported substance but did not fully inhibit the ion movements. It is concluded that the transport properties of porin reconstituted in artificial phospholipid membranes are different from the characteristics of porin prevailing in the mitochondrial contact sites and additional regulatory factors are suggested to be effective in the intact mitochondria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call