Abstract
BackgroundRational design of cryopreservation strategies for oocytes and ovarian cortex tissue requires insights in the rate at which cryoprotective agents (CPA) permeate and concomitant water transport takes place. The aim of the current study was to investigate possible differences in permeation kinetics of different CPAs (i.e., glycerol/GLY, ethylene glycol/EG, dimethyl sulfoxide/DMSO, and propylene glycol/PG), in equine oocytes as well as ovarian tissue. MethodsMembrane permeability of oocytes to water (Lp) and to CPAs (Ps) was inferred from video microscopic imaging of oocyte volume responses during perfusion with anisotonic and CPA solutions. CPA diffusion into ovarian tissue and tissue dehydration was monitored during incubation, using osmometer and weight measurements, to derive CPA diffusion coefficients (D). ResultsMembrane permeability of oocytes towards CPAs was found to increase in the order GLY < EG < DMSO<PG. Permeability towards water in anisotonic solutions was determined to be higher than in CPA solutions, indicating CPAs alter membrane permeability properties. CPA diffusion in ovarian tissue increased in the order GLY,PG < EG,DMSO. Tissue dehydration was found to increase with exposure to increasing CPA concentrations, which inversely correlated with CPA diffusivity. ConclusionsIn conclusion, it is shown here that the rate of CPA movement across membrane bilayers is determined by different physical barrier factors than those determining CPA movement in tissues. General significanceThe parameters presented in this study can be applied in models describing solute and water transport in cells and tissues, as well as in cryopreservation protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.