Abstract

This paper presents a mathematical model to simulate the silica hollow optical fiber-drawing process. Two neck-down profiles, which represent the inner and outer surfaces of the hollow fiber, are generated by using an iterative numerical scheme. The zonal method is applied to calculate the radiative transport within the glass. The effects of variable properties for air are investigated and results indicate that these can be neglected for simulating the draw process under typical draw conditions. Inclusion of buoyancy in the flow is also studied and it is found that the flow can be significantly affected due to buoyancy. The validation of the model is carried out by comparing the results with those obtained by using the optical thick method as well as those for a solid-core fiber. The effects of drawing parameters such as the temperature of the furnace, feeding speed, and drawing speed on the temperature and velocity distributions and on the draw tension are studied. It is found that the geometry and qualities of the final hollow optical fiber are highly dependent on the drawing parameters, especially the drawing temperature and the feeding speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.