Abstract

Applications of electric fields during washing of filter cakes increases the removal rate of ions from the cake mother liquor, and under appropriate conditions the field also increases the wash flow rate by electroosmosis. Experimental data that show the key effects of the fields on the rates of ion mass transfer are presented: with the downstream electrode acting as a cathode, cation removal rates are increased whilst the removal rate of the anions is decreased. The concentration profile of the cations with washing time shows an increase in concentration to a value above that of the mother liquor, before it decreases due to displacement by the fresh wash liquor. A model is formulated that describes the advection, dispersion, ion migration and electroosmosis transport processes in the cake. Numerical solution of the model gives cation concentration profiles at the exit of the cake that are in qualitative agreement with the experimental observations. Experimentally measured wash liquor flow rates tend to be lower than what traditional colloid science principles predict by a factor of 5–10: reasons for this difference, supported by experimental work from other researchers, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.