Abstract
This paper focuses on martingale optimal transport problems when the martingales are assumed to have bounded quadratic variation. First, we give a result that characterizes the existence of a probability measure satisfying some convex transport constraints in addition to having given initial and terminal marginals. Several applications are provided: martingale measures with volatility uncertainty, optimal transport with capacity constraints, and Skorokhod embedding with bounded times. Next, we extend this result to multi-marginal constraints. Finally, we consider an optimal transport problem with constraints and obtain its Kantorovich duality. A corollary of this result is a monotonicity principle which gives a geometric way of identifying the optimizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.