Abstract

A first-principles derivation of the master equation is systematically given based on Kikuchi's ansatz, which is then applied to non-interacting (ideal) and interacting lattice–gas systems. The former application to an anomalous diffusion, observed by MD simulation of β-AgI, makes its mechanism clear in terms of relaxation modes such that the anomalous diffusion is due to non-diffusive (collective) modes. It is also shown in random systems that anomalous frequency-dependent conductivities, made up of Jonscher and nearly constant loss regimes, are reduced to a single master curve. The case of interacting lattice–gas system is discussed on the ab-plane of Rb 3H(SeO 4) 2 by a pair approximation of the path probability method, where a spontaneous strain involved in the ferroelastic phase turns out to be a proton-trapped state originated in an attractive strain energy mediated by a proton–displacement interaction, and the transition to superprotonic phase is due to an off-trapping of protons. This mechanism is confirmed by no phase transition without the attractive strain energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.