Abstract

A mathematical model for simulating biological field effect transistor (Bio-FET) experiments is introduced. It takes the form of a nonlinear equation that describes evolution of reacting species concentration at the boundary coupled to a diffusion equation. Using analytic techniques, this coupled system of equations is reduced to a singular integrodifferential equation (IDE). A numerical approximation of this equation is developed that achieves greater than first-order accuracy in time and greater than second-order accuracy in space, despite the presence of a singular temporal convolution kernel and a discontinuous boundary condition. The mathematical model was validated using Bio-FET data, and stochastic regression was employed to separate signal from noise. Results show that our IDE provides a robust way of estimating important parameters such as diffusion coefficients and kinetic rate constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.