Abstract

The transport phenomena in injection lance and the penetrability of solid particles into liquid metal at the lance tip during injection treatment was analysed by a one-dimensional mathematical model developed in this work. Mechanic interactions and heat transfers between a solid particle, carrier gas, lance and/or hot metal have been incorporated in the model. Temperatures and velocities of carrier gas and solid particles were examined for a typical hot metal desulphurisation process by granulated magnesium injection. The temperature of gas increases by several hundred degrees, while that of solid magnesium particles only by several degrees in the lance. The gas velocity is increased by thermal expansion in lance. At the lance tip, the magnesium particle velocity is slower than the gas velocity. The penetrability of a magnesium particle into the hot metal at the lance tip was analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call