Abstract

AbstractBiological productivity in the Southern Ocean is modulated by iron availability. Every summer, a large phytoplankton bloom forms northwest of the Ross Sea, above the Antarctic Australian Ridge (AAR), due to a plume of iron‐rich waters. Here, we investigate the origin and trajectories of these iron‐rich waters by analyzing water mass observations and Lagrangian experiments. Output from the Southern Ocean State Estimate (SOSE) and in situ measurements reveal that iron‐rich AAR bloom waters share properties with Modified Circumpolar Deep Water (MCDW), which forms on the Antarctic shelf‐slope. The Lagrangian experiments are conducted using SOSE velocities. Bloom waters tracked with virtual Lagrangian particles highlight an along isopycnal pathway of MCDW from Antarctica's shelf‐slope to the AAR bloom site, illustrating advection of these waters by the Balleny Gyre. These results are supported by temperature‐salinity analyses, which show a correlation between waters advected northwards; MCDW properties; and high iron concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.