Abstract
One-dimensional-imaging laser-induced fluorescence spectroscopy (1D-LIF) has been applied to investigate the dynamics of the nonemissive neutral particles (YO molecules) during the ArF excimer laser ablation of YBa2Cu3O7−δ in an ambient oxygen gas. Investigating the 1D-LIF observation, the propagation of particles through the ambient gas at appropriately high pressures is categorized into two phases, the propagation phase and the diffusion phase. In the propagation phase, the point source blast wave model (shock model) describes well the dynamics at high background gas pressures. Particles propagate according to the shock model over a finite distance from the pellet surface after the ablation, and almost stop there. The propagation distance depends on the ambient gas pressure and the ablation fluence. After the propagation ceases, the particles start to diffuse through the background gas; that is the diffusion phase. Rotational temperature variations of YO molecules in the different phases are also measured. Rotational temperatures as high as 1000 K are observed even in the diffusion phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.