Abstract
We explore atom-laser-like transport processes of ultracold Bose-condensed atomic vapors in mesoscopic waveguide structures beyond the Gross-Pitaevskii mean-field theory. Based on a microscopic description of the transport process in the presence of a coherent source that models the outcoupling from a reservoir of perfectly Bose-Einstein condensed atoms, we derive a system of coupled quantum evolution equations that describe the dynamics of a dilute condensed Bose gas in the framework of the Hartree-Fock--Bogoliubov approximation. We apply this method to study the transport of dilute Bose gases through an atomic quantum dot and through waveguides with disorder. Our numerical simulations reveal that the onset of an explicitly time-dependent flow corresponds to the appearance of strong depletion of the condensate on the microscopic level and leads to a loss of global phase coherence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.