Abstract

An initial analysis of both surface and aerial SF/sub 6/ tracer data from the Geysers illustrates the importance that terrain, vertical wind shear, time-varying winds and stability have on the downwind distribution of cooling tower effluents during the daytime. Atmospheric stability and near surface winds above 3 m/s results in fumigation and surface impaction of a portion of cooling tower plumes on downwind surfaces and terrain. Vertical wind shear and possible gravity waves in upper-levels (approx. 1800 to 2000 m m.s.l), in addition, to terrain influences assist in distributing plumes horizontally and in the vertical at relative short (approx. 10 to 20 km) distances from the source. Small quantities of gaseous sulfur, primarily H/sub 2/S, are transported up to 20 km or more from the Geysers area. A variety of trace materials such as sulfate, copper, zinc, arsenic, bromine, lead, antimony, selenium and barium appear to be enriched over background levels and transported downwind from the Geysers Area at times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.