Abstract

Rain runoff from windrowed or stockpiled manure may contain antimicrobials with the potential to contaminate surface and ground water. To quantify the concentration of antimicrobials transported in runoff from windrowed manure, antimicrobials were administered continuously in feed to beef cattle () as follows: 44 mg of chlortetracycline kg feed (dry weight), a 1:1 mixture of 44 mg of chlortetracycline and 44 mg sulfamethazine kg feed, and 11 mg of tylosin kg feed. Cattle in a fourth treatment group received no antimicrobials (control). Manure from the cattle was used to construct two windrows per treatment. On Days 2 and 21 of composting, a portable Guelph Rainfall Simulator II was used to apply deionized water at an intensity of 127 mm h to each windrow, and the runoff was collected. Manure samples were collected before rain simulations on Days 2 and 21 of composting for antimicrobial analysis. On Day 2, average concentrations of chlortetracycline, sulfamethazine, and tylosin in manure were 2580, 450, and 120 μg kg, respectively, with maximum concentrations in runoff of 2740, 3600, and 4930 μg L, respectively. Concentrations of all three antimicrobials in runoff were higher ( < 0.05) on Day 2 than on Day 21, reflecting the higher concentrations in manure on Day 2. Maximum estimated masses of chlortetracycline, sulfamethazine, and tylosin that could be transported in runoff from a windrow (3 m long, 2.5 m wide, 1.5 m high) were approximately 0.87 to 0.94, 1.57, and 1.23 g, respectively. This study demonstrates the importance of windrow composting in reducing antimicrobial concentrations in manure. The runoff from windrows can be a source of antimicrobials and demonstrates the need for containment of runoff from composting facilities to mitigate antimicrobial contamination of surface and groundwater resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.