Abstract

The γ-glutamyl cycle has been proposed by Meister (1973) as one possible mechanism for the mediation of amino acid transport. The high energy requirement of the pathway, the very low specificity of γ-glutamyl transpeptidase and the inability to account for trans membrane stimulation of amino acid entry are but three criticisms of this hypothesis. It is proposed that the various objections can be overcome by postulating that the soluble form of γ-glutamyl transpeptidase transfers the γ-glutamyl moiety from gluthathione to glutamine (in the case of brain) and that the membrane sequestered form of this enzyme catalyzes the exchange of the γ-glutamyl group between γ-glutamyl glutamine and an entering neutral amino acid. The released glutamine leaves the cell. The γ-glutamyl amino acid then passes into the cytoplasm where it is acted upon by either γ-glutamyl cyclotransferase or the soluble γ-glutamyl transpeptidase which transfers the γ-glutamyl group to another molecule of glutamine. It is postulated that access to the membrane-bound enzyme is dependent on the relative lipophilia of the entering large-neutral amino acids. The available data support this mechanism. By regeneration of γ-glutamyl glutamine, a low expenditure of energy is required for the transport process. Specificity of transpeptidation is attained by the constraints of access to the membrane bound enzyme site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call