Abstract

In this work, gradual solar energetic particle (SEP) events observed by multiple spacecraft are investigated with model simulations. Based on a numerical solution of the Fokker–Planck focused transport equation including perpendicular diffusion of particles, we obtained the fluxes of SEPs accelerated by an interplanetary coronal mass ejection driven shock as it propagates outward through the three-dimensional Parker interplanetary magnetic field. The shock is treated as a moving source of energetic particles with an assumed particle distribution function. We look at the time profiles of particle flux as they are observed simultaneously by multiple spacecraft located at different locations. The dependence of particle fluxes on different levels of perpendicular diffusion is determined. The main purpose of our simulation is to reproduce the reservoir phenomenon, during which it is frequently observed that particle fluxes are nearly the same at very different locations in the inner heliosphere, up to 5 AU, during the decay phase of gradual SEP events. The reservoir phenomenon is reproduced in our simulation under a variety of conditions of perpendicular diffusion of particles estimated from the nonlinear guiding center theory (NLGC). As the perpendicular diffusion coefficient increases, the nonuniformity of particle fluxes becomes smaller, making the reservoir phenomenon more prominent. However, if the shock acceleration strength decreases slower than r −2.5 with the radial distance r, the reservoir phenomenon might disappear, with limited perpendicular diffusion constrained by the NLGC theory. Therefore, observation of the reservoir phenomenon in gradual SEP events can be used to test qualitatively theories of particle diffusion and shock acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.