Abstract

Deposition of nanomaterials onto surfaces is a key process governing their transport, fate, and reactivity in aquatic systems. We evaluated the transport and deposition behavior of carboxyl functionalized single-walled carbon nanotubes (SWNTs) in a well-defined porous medium composed of clean quartz sand over a range of solution chemistries. Our results showthat increasing solution ionic strength or addition of calcium ions result in increased SWNT deposition (filtration). This observation is consistent with conventional colloid deposition theories, thereby suggesting that physicochemical filtration plays an important role in SWNT transport. However, the relatively insignificant change of SWNT filtration at low ionic strengths (< or = 3.0 mM KCl) and the incomplete breakthrough of SWNTs in deionized water (C/Co = 0.90) indicate that physical straining also plays a role in the capture of SWNTs within the packed sand column. It is proposed that SWNT shape and structure, particularly the very large aspect ratio and its highly bundled (aggregated) state in aqueous solutions, contribute considerably to straining in flow through porous media. We conclude that both physicochemical filtration and straining play a role at low (< 3.0 mM) ionic strength, while physicochemical filtration is the dominant mechanism of SWNT filtration at higher ionic strengths. Our results further show that deposited SWNTs are mobilized (released) from the quartz sand upon introduction of low ionic strength solution following deposition experiments with monovalent salt (KCl). In contrast, SWNTs deposited in the presence of calcium ions were not released upon introduction of low ionic strength solution to the packed column, even when humic acid was present in solution during SWNT deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.