Abstract

A sediment transport equation based on universal stream power is presented for the prediction of bed-material concentrations in large sand-bed rivers. The universal stream power, which is derived from the energy concept, has the advantage of eliminating the energy slope as a parameter. The energy slope, which is in the order of 10-5 for large rivers, is a major source of uncertainty in measurements. The analysis shows that relationships derived from flume experiments with shallow flows cannot be universally applied to large rivers with deep flows. Also the use of dimensionless homogeneous parameters in an equation is not sufficient to ensure its applicability to flow conditions where flow depths are several orders of magnitude larger. The comparisons between computed and measured sediment concentrations indicate that the commonly used Engelund and Hansen, Ackers and White, and Yang equations which were developed using mainly flume experiments are not applicable for large rivers with flow depths and Reynolds numbers up to 100 times larger than those found in flumes. The Toffaleti's method which was developed mainly from field data gives reasonable predictions of sediment transport rates for large rivers. Using the proposed equation, the computed sediment transport rates are in much closer agreement with the actual measured values in large and medium rivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.