Abstract

Poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) with surface poly-(γ-glutamic acid) (γ-PGA) were applied to enhance the transport of saquinavir (SQV) across the blood–brain barrier (BBB). PLGA NPs encapsulated SQV and grafted with γ-PGA to form drug carriers (γ-PGA/SQV-PLGA NPs) for crossing through a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated with human astrocytes. The results revealed that a lower molecular weight of γ-PGA yielded a higher grafting efficiency of γ-PGA on PLGA NPs. In addition, γ-PGA with a low molecular weight accelerated the dissolution of SQV from γ-PGA/SQV-PLGA NPs. A higher grafting efficiency (more didecyl dimethylammonium bromide) and a lower molecular weight of γ-PGA increased the permeability of SQV across the BBB, in general. When the grafting efficiency was 85.2% at 6 kDa of γ-PGA, γ-PGA/SQV-PLGA NPs reached about 6 times the permeability of free SQV (the maximal permeability). γ-PGA could also promote the endocytosis of NPs and expression of ornithine decarboxylase by HBMECs. γ-PGA/SQV-PLGA NPs are efficacious nanoparticulate carriers in delivering antiretroviral drug across the BBB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call