Abstract

The anticancer effect of ribavirin, a purine nucleoside analogue, has been studied using cultured cancer cells such as the human myelogenous leukemia cell line K562. In order to exert its pharmacological effect, ribavirin has to enter cancer cells. However, there is little information concerning the transport mechanism of ribavirin into K562 cells. In this study, therefore, we examined the uptake mechanism of ribavirin in K562 cells. The uptake of ribavirin in K562 cells was time- and temperature-dependent, and was saturable with a Km value of 1.5 mM. Ribavirin uptake was inhibited by nucleosides such as adenosine and uridine, and by inhibitors of equilibrative nucleoside transporter 1 (ENT1) such as S-(4-nitrobenzyl)-6-thioinosine and dipyridamole in a concentration-dependent manner. In addition, the expression of ENT1 mRNA in K562 cells was confirmed by real-time PCR. On the other hand, Na+-dependence of ribavirin uptake was not observed, suggesting the involvement of ENT1, but not Na+-dependent concentrative nucleoside transporters, in ribavirin uptake in K562 cells. Treatment of K562 cells with sodium butyrate induced erythroid differentiation, but ribavirin uptake activity and sensitivity of the uptake to various inhibitors were not different between native and differentiated K562 cells. These results suggest that ribavirin uptake into K562 cells is mainly mediated by ENT1, which may have a pivotal role in anticancer effect of ribavirin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.