Abstract

AbstractSubmarine groundwater discharge (SGD) plays a critical role in coastal and ocean biogeochemistry. Elucidating spatially and temporally heterogeneous SGD fluxes is difficult. Here we use radium isotopes to explore the external sources and mixing regime along the eastern coast of South Africa. We demonstrate that the long‐lived radium isotope compositions are controlled by low inputs of low‐ and high‐salinity terrestrial groundwater. While activities of 228Ra and 226Ra in beach porewaters are similar to coastal waters, 224Ra is enriched by inputs of 228Th from coastal seawater. Porewater ages, based on the production of 224Ra from 228Th, range from 0.3 to 2.3 days, indicating rapid flushing of the beach system. Unlike radium, however, nutrients follow a more complex pathway. We hypothesize that high total dissolved nitrogen (TDN) and phosphorus concentrations in beach porewaters (TDN ranges from 1 to >700 μM) and the coastal ocean (TDN ranges from 1 to >40 μM) are derived from a source not enriched in radium. We speculate that this source is terrestrial water flowing below the dune barrier at depths exceeding our beach sampling depths. This water likely flows upward through breaches in the confining layer into the beach or enters the ocean directly through paleochannels. The presence of high nutrient concentrations in the coastal ocean unaccompanied by high 228Ra activities leads to the hypothesis of this additional nutrient source. These combined inputs may be of considerable importance to the coastal ecology of southeastern Africa, an oligotrophic ecosystem dominated by the nutrient‐poor Agulhas Current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call