Abstract

Human ileal brush-border membrane vesicles were employed to study the mechanisms of short-chain fatty acid (propionate) absorption especially to determine the effects of intravesicular HCO3- and the component of nonionic diffusion. Preloading the vesicles with HCO3- resulted in up to 20-fold "overshoots" of transport, and this effect was not seen with other intravesicular anions. This transport process was very fast (peak uptake 6 s) and was not due to intravesicular buffering by HCO3-. Radiolabeled propionate transport demonstrated transstimulation when the vesicles were preloaded with unlabeled propionate. An inward H+ gradient led to stimulation of propionate transport much smaller than in the presence of trans-HCO3-, whereas an inward Na+ gradient had no effect. Propionate transport was attenuated by the anion exchange inhibitors SITS and DIDS. Under HCO3- gradient conditions, propionate transport exhibited saturation kinetics with an apparent Km of 21 +/- 3 mM and a Vmax of 50 +/- 3 nmol.mg protein-1.3 s-1. Propionate transport was inhibited up to 40% by 2-5 carbon short-chain fatty acids (10 mM) but not by other organic anions. Short-chain fatty acid transport in the human ileum is Na+ independent and occurs mostly via a specific anion exchange mechanism with HCO3-. Our results also demonstrate a small component of nonionic diffusion of the protonated fatty acid (or anion exchange for OH-).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.