Abstract
This research explored the effects of widely utilized nanomaterial graphene oxide (GO) and organic matter humic acid (HA) on the transport of microplastics under different ionic solution strengths in bare sand and iron oxide-coated sand. The results found transport of polystyrene microplastics (PS) did not respond to the presence of HA in sand that contains large amounts of iron oxide. Compared to bare quartz sand, ionic strength had little effect: <20 % of PS passed through Fe sand columns. There was a significant promotion of PS transport in the presence of GO, however, which can be attributed to the increased surface electronegativity of PS and steric hindrance. Moreover, GO combined with HA significantly promoted the transport of PS in the Fe sand, and transport further increased when the concentration of HA increased from 5 to 10 mg/L. Interestingly, the degree of this increase exactly corresponded to the change in the surface charge of the microplastics, demonstrating that electrostatic interaction dominated the PS transport. Further results indicated that co-existing pollutants had significant impacts on the transport of microplastics under various conditions by altering the surface characteristics of the plastic particles and the spatial steric hindrance within porous media. This research will offer insights into predicting the transport and fate of microplastics in complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.