Abstract
Nanoscale zero-valent iron (nZVI) particles have gained widespread use for in-situ treatment of various chlorinated hydrocarbons. Their non-toxic nature, affordability, and minimal maintenance requirements have made them a favored material for nanoremediation. The treatment typically involves the injection of nZVI particles into contaminated sites using direct-push well injection systems. However, their small size leads to high surface energy, causing aggregation that alters their physiochemical properties, reactivity, and transport behavior. To counteract aggregation, nZVI suspension can be stabilized with different surfactants, reducing the surface energy during subsurface soil transport. This study investigates the impact of rhamnolipid, a biosurfactant produced by Pseudomonas aeruginosa during the late growth phase, on the aggregation and mobility of nZVI particles. The retardation factor of nZVI in the model media of zeolite, ZK406H, decreased from 1.66 in the absence of rhamnolipid to 1.03, 0.98, 0.93, and 0.87, corresponding to the presence of rhamnolipid at concentrations of 20, 50, 80, and 100 mg/L. The deposition coefficient also decreased from 2.39 in the absence of rhamnolipid to 0.459, 0.279, 0.217, and 0.0966, corresponding to the presence of rhamnolipid at concentrations of 20, 50, 80, and 100 mg/L. The transport parameters of nZVI in ZK406H were linked to the interactions of nZVI particles with ZK406H by the DLVO theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.