Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the rat retina and at least seven heteromeric subtypes have been detected. Axons of retinal ganglion cells form the optic nerve and innervate areas of the brain important for visual processing, including the lateral geniculate nucleus, the superior colliculus, and the pretectal nucleus. Development of eye-specific layers in these projection areas are dependent upon retinal waves which are initially mediated by nAChRs [Feller et al., Science 272 (1996), 1182; Penn et al., Science 279 (1998), 2108; Bansal et al., J. Neurosci. 20 (2000), 7672]. Unilateral eye-enucleation studies in the rat indicate that nAChRs are on the terminals of optic nerve axons, where they may mediate influences of acetylcholine on visual pathways. In this study, we use radioligand binding and immunoprecipitation with subunit-selective antibodies to investigate the subunit composition of nAChRs in the rat optic nerve. We found multiple nAChR subtypes in the optic nerve, all of which contain the beta2 subunit. Most of these receptors are mixed heteromeric subtypes, composed of at least three different subunits. Included among these subtypes is the highest percentage and density of alpha6- and beta3-containing nAChRs of any area of the rat CNS that has been reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.