Abstract

This research explores the transport of a Jeffrey fluid through a permeable slit of microchannel under the effect of a porous medium and constant reabsorption. Physical laws of fluid mechanics are used to study the flow in a cross-sectional area of a narrow slit which generates a highly nonlinear system of partial differential equation with nonhomogeneous boundary conditions. To solve the complex boundary value problem; a recursive (Langlois) approach is used and explicit expressions for velocity, pressure, stream function, flux, shear stress and fractional reabsorption are calculated. It is noticed that the flow rate at the centre line of slit and shear stress on the walls of slit decay due to the presence of porous medium and viscoelastic fluid parameters. It is also quantitatively observed that more pressure is required for the fluid flow when the slit is filled with a porous medium and reabsorption on the walls is constant. The mathematical results of the present research have significant importance in the field of biofluid mechanics and medical industry, therefore the application of a diseased rat kidney is also included in this research: and reabsorption velocities in the case of a diseased and a healthy rat kidney are calculated with the effects of a porous medium and constant re-absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.