Abstract

The nanosegregated structures of columnar, smectic and bicontinuous cubic liquid crystals can provide well-organized, nano- and sub-nanosized 1D, 2D and 3D channels capable of ion and electron transport. The molecular shape, intermolecular interactions and nanosegregation of the molecular structures can influence their self-assembly into a range of functional liquid-crystalline nanostructures. The formation of stable and soft liquid-crystalline materials leads to their application as electrolytes for batteries and photovoltaics, semiconductors, electroluminescence and electrochemical devices. In addition, electrochemical devices are obtained by using redox-active liquid crystals. In this Review, we focus on the design of liquid-crystalline phases, the resultant self-assembled structures, the transport mechanisms, and the fabrication, function and future development of devices incorporating nanostructured liquid crystals. Liquid-crystalline nanostructures can form well-organized 1D, 2D and 3D channels capable of transporting ions or electrons. In this Review, the design of liquid-crystalline phases, their self-assembled structures, and the fabrication and function of devices incorporating them are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.