Abstract

Throughout the history of the solar system, Mars has experienced continuous asteroidal impacts. These impacts have produced impact-generated Mars ejecta, and a fraction of this debris is delivered to Earth as Martian meteorites. Another fraction of the ejecta is delivered to the moons of Mars, Phobos and Deimos. Here, we studied the amount and condition of recent delivery of impact ejecta from Mars to its moons. Using state-of-the-art numerical approaches, we report, for the first time, that materials delivered from Mars to its moons are physically and chemically different from the Martian meteorites, which are all igneous rocks with a limited range of ages. We show that Mars ejecta mixed in the regolith of its moons potentially covers all its geological eras and consists of all types of rocks, from sedimentary to igneous. A Martian moons sample-return mission will bring such materials back to Earth, and the samples will provide a wealth of “time-resolved” geochemical information about the evolution of Martian surface environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.