Abstract

The characteristics of guanidine uptake were studied in brush-border membrane vesicles isolated from the rabbit proximal intestine. Guanidine uptake was manyfold greater in the presence of an outward-directed H+ gradient (intracellular pH = 5.5; extracellular pH = 7.2) than in the absence of a H+ gradient (intracellular and extracellular pH = 7.2). The time course of guanidine uptake exhibited an overshoot phenomenon in the presence of the H+ gradient, indicating occurrence of uphill transport. This H+ gradient-stimulated guanidine uptake was not due to an inside-negative H+-diffusion potential because carbonyl cyanide 4-trifluoromethoxyphenylhydrazone, a protonophore, failed to have any effect on guanidine uptake. Moreover, the transient uphill transport of guanidine was observed even in voltage-clamped membrane vesicles. However, under the conditions that effectively dissipated the H+ gradient, there was no active transport of guanidine. This H+ gradient-dependent transport mechanism for guanidine is distinct from the Na+-H+ exchanger, because amiloride did not inhibit guanidine uptake even at a concentration as high as 100 microM. These data provide evidence for the presence of a guanidine-H+ antiport system in the rabbit intestinal brush-border membrane. The presence of a carrier for guanidine in these membranes is further substantiated by the trans-stimulation of the uptake of radiolabeled guanidine by unlabeled guanidine and by the inhibition of guanidine uptake by imipramine under equilibrium exchange conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call