Abstract
The transport of ground-state atomic hydrogen in the expansion of a thermal plasma generated from an Ar-H2 mixture is studied by means of laser-based diagnostic techniques. The flow of hydrogen atoms is investigated by two-photon excitation laser-induced fluorescence (LIF), whereas Ar atoms are probed by LIF as well as by UV Rayleigh scattering. The transport of Ar atoms can be fully understood in terms of a free jet flow; H atoms on the contrary exhibit an anomalous behavior. In the course of the plasma expansion, hydrogen atoms decouple from the argon fluid by a diffusion process as a direct consequence of recombination of H atoms at the vessel walls. In this contribution it is shown, on the basis of experimental results, how plasma-surface interactions can strongly influence the flow pattern of an atomic radical fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.