Abstract

In this work we present transport coefficients for electrons in Ar/H2 mixtures for the conditions used in plasma-assisted technologies for semiconductor production, i.e., in moderate and very high E/N. We used a two-term numerical solution of the Boltzmann equation at the lowest E/N (E is the electric field; N is the gas density) and correspondingly at the lowest mean energies. We also use the Monte Carlo simulation technique at moderate and high E/N. We show that a good agreement with experimental data exists for low and moderate E/N and that based on the tests for pure H2 and Ar we can model properly the swarm properties at high E/N. For the conditions of very high electric fields runaway peaks develop in the electron energy distribution function and appreciable contribution of backscattered high-energy electrons produces additional emission of Hα emission close to the anode (made of stainless steel). Results are obtained for abundances of H2 from 1% to 30%, which are necessary in kinetic models for this mixture in a number of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.