Abstract

This paper presents a theoretical analysis of a pulsed bicomponent contaminant emission into a free-surface wetland flow. The basic equations are for the bicomponent contaminant transport in the wetland flow under the combined action of advection, mass dispersion, and ecological reaction at the phase averaged scale. The effect of the ecological reaction is separated from the hydrodynamic effect via a set of widely used transforms. The analytical solution for the evolution of the depth-averaged concentration is rigorously derived, with a limiting case covering the known solution for the single component contaminant transport. It is found that the depth-averaged species concentration of the bicomponent contaminant can approach an equilibrium state determined by the distribution coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.