Abstract

Transport of the amino acids L-valine, L-lysine, and L-glutamic acid and of sucrose was studied in plasma membrane vesicles isolated from developing cotyledons of pea (Pisum sativum L. cv. Marzia). The vesicles were obtained by aqueous polymer two-phase partitioning of a microsomal fraction and the uptake was determined after the imposition of a H(+)-gradient (DeltapH, inside alkaline) and/or an electrical gradient (Deltapsi, inside negative) across the vesicle membrane. In the absence of gradients, a distinct, time-dependent uptake of L-valine was measured, which could be enhanced about 2-fold by the imposition of DeltapH. The imposition of Deltapsi stimulated the influx of valine by 20%, both in the absence and in the presence of DeltapH. Uptake of L-lysine was more strongly stimulated by Deltapsi than by DeltapH, and its DeltapH-dependent uptake was enhanced about 6-fold by the simultaneous imposition of Deltapsi. In the absence of gradients the uptake of L-glutamic acid was about 2-fold higher than that of L-valine, but it was not detectably affected by DeltapH or Deltapsi. Although the transport of sucrose was very low, a stimulating effect of DeltapH could be clearly demonstrated. The results lend further support to the contention that during seed development cotyledonary cells employ H(+)-symporters for the active uptake of sucrose and amino acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call