Abstract

Stable colloidal particles can travel long distances in subsurface environments and carry particle-reactive contaminants with them to locations further than predicted by the conventional advective-dispersive transport equation. When such carriers exist in a saturated porous medium, the system can be idealized as consisting of three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. However, when colloids are present in an unsaturated porous medium, the system representation should include one more phase, i.e. the air phase. In the work reported, a mathematical model was developed to describe the transport and fate of the colloidal particles and a non-volatile contaminant in unsaturated porous media. The model is based on mass balance equations in a four-phase porous medium. Colloid mass transfer mechanisms among aqueous, solid matrix, and air phases, and contaminant mass transfer between aqueous and colloid phases are represented by kinetic expressions. Governing equations are non-dimensionalized and solved to investigate colloid and contaminant transport in an unsaturated porous medium. A sensitivity analysis of the transport model was utilized to assess the effects of several parameters on model behavior. The colloid transport model matches successfully with experimental data of Wan and Wilson. The presence of air-water interface retards the colloid transport significantly counterbalancing the facilitating effect of colloids. However, the retardation of contaminant transport by colloids is highly dependent on the properties of the contaminant and the colloidal surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call