Abstract

The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call