Abstract

We investigated the concentration and delivery of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of flooded and well-drained 1-month-old tomato plants (Lycopersicon esculentum Mill. cv. Ailsa Craig) over time in parallel with foliar ethylene production and petiole epinasty. ACC was measured by gas chromatography using a nitrogen–phosphorus detector. Before analysis, roots of freshly detopped plants were pressurised pneumatically to make xylem sap flow at rates similar to those of whole plant transpiration. Delivery of ACC from roots to shoots of well-drained plants was sufficient to support basal ethylene production in shoots of unstressed plants. Delivery from flooded, oxygen-deficient, roots increased after 6 h and coincided with the onset of epinastic leaf curvature. Further increases in ACC delivery and epinastic curvature occurred later in the photoperiod. After 24 h flooding, ACC delivery in xylem sap was 28 times more than in well-drained plants. This increased export of ACC from flooded roots was more than sufficient to account for the extra ethylene production in the shoots and coincided with ACC accumulation in the leaves. Removing the shoot before flooding did not reduce ACC export from oxygen-deficient roots indicating that the ACC originated in roots and not the shoot. Increased ethylene production in petioles of flooded plants lagged 18 h behind epinasty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.