Abstract

Nuclear stopping in heavy-ion collisions over a beam energy range from SIS and AGS up to SPS is studied in the framework of the modified Ultrarelativistic Quantum Molecular Dynamics transport model, in which mean field potentials of both formed and ``preformed'' hadrons (from string fragmentation) and medium-modified nucleon-nucleon elastic cross sections are considered. It is found that nuclear stopping is influenced by both the stiffness of the equation of state and medium modifications of nucleon-nucleon cross sections at SIS energies. At high SPS energies, a two-bump structure is shown in the experimental rapidity distribution of free protons, which can be understood by considering the preformed hadron potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.