Abstract

This paper describes the role of traps in the electronic conductivity of tris(8-hydroxyquinoline)aluminium (Alq3) in a conventional sandwich structure with indium tin oxide and aluminium electrodes. New results obtained by photodipolar absorption techniques and impedance spectroscopy are presented. The former method acts as a probe to highlight the role of traps. It is shown that optical pumping of electrons to trap levels gives a clear increase in dielectric absorption due to the reorientation of dipoles associated with trapped charges. The trap depth is estimated to be around E t = 0.19 eV, a value in good agreement with theoretical calculations and thermoluminescence measurements. The latter method permits a representation of the sample in terms of a circuit composed of a parallel capacitor (C p) and resistor (R p) both in series with a resistor R s ≈ 50 Ω located on the anode side. A logarithmic plot of R p as a function of the dc bias voltage gives a linear law that is recognized, for the first time, to be a consequence of a trapped charge limited (TCL) current. The linearity can be improved by the introduction of a field-dependent mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.