Abstract

This study evaluated the transport mechanisms and emission rates of landfill gas (LFG) from 200- (vegetated with short grass), 300- (vegetated with short grass), and 450-mm-thick (non-vegetated) interim cover soils within a municipal solid waste landfill. LFG emission and diffusion mechanisms were evaluated using static flux chambers and laboratory-scale diffusion columns. Overall, the greatest CH4 and CO2 emissions were consistently observed from the 200-mm-thick cover soil with an average flux rate of 39.2 mg m−2 h−1 and 3.07 × 103 mg m−2 h−1, respectively. In addition to CH4 and CO2, H2S migration through a 450-mm interim cover soil was also evaluated. The H2S emission rate was relatively more uniform at an average of 2.47 × 10−5 mg m−2 h−1. Long-term LFG emission was predicted using an emission model based on a first-order decomposition rate equation and compared with the static flux chamber method. The field-measured CO2, CH4 and H2S emissions were less than the estimated emissions from the emission model, by 22%, 85%, and 91%, respectively. Further, the diffusion coefficients of CH4, CO2, and H2S for the interim cover soils were determined using a laboratory-scale diffusion column test and compared with a three-parameter diffusion model. The measured and estimated diffusion coefficients for the three landfill gases were within the 10% variation limits. Based on these findings, the LFG emission rate varied depending on the physical-chemical properties of the cover soil (e.g., cover thickness, moisture content, compaction ratio, uneven distribution of soil), organic material content and age of buried refuse, and seasonal environmental conditions (such as temperature). Test results showed that fugitive CH4 emissions can be reduced one fourth by utilizing an appropriate cover soil (300-mm to 450-mm, CL) compared to cases with a thinner cover soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call