Abstract

The transport mechanism of the potato StSUT1 H+/sucrose cotransporter expressed in Xenopus oocytes was investigated using the 2-electrode voltage clamp and radiotracer flux methods. Sucrose induced inward currents through the transporter that were dependent on the extracellular sucrose and H+ concentrations and the membrane voltage. The activation of StSUT1 by H+ and sucrose displayed Michaelis-Menten-type kinetics suggestive of a 1:1 H+:sucrose stoichiometry. This was confirmed by simultaneously measuring inward currents and sucrose flux in voltage-clamped oocytes. The apparent affinities K0.5 for H+ and sucrose were voltage-dependent. At -150 mV Ksuc0.5 was 0.5 +/- 0.07 mM at 10 microM H+o, and KH0.5 was 0.1 +/- 0.05 microM at 20 mM sucroseo. StSUT1 exhibited presteady-state transient currents, which relaxed with time constants between <1 and 4 ms and fitted to the Boltzmann equation: maximum charge transfer Qmax approximately 1.8 nanocoulombs; apparent valence z approximately 1; potential for 50% charge transfer V0.5 approximately -15 mV at 0.032 microM H+o and -45 mV at 10 microM H+o. The steady-state data were used to formulate a kinetic model for sucrose transport, and computer simulations were performed to obtain rate constants for the partial reaction steps. Our model is consistent with protons binding to StSUT1 before sucrose with both ligands transported simultaneously across the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.