Abstract

The Kondo effect in condensed-matter systems manifests itself most sharply in their transport measurements. Here we propose an analogous transport signature of the orbital Kondo effect realized with ultracold atoms. Our system consists of imbalanced Fermi seas of two components of fermions and an impurity atom of different species which is confined by an isotropic potential. We first apply a \pi/2 pulse to transform two components of fermions into two superposition states. Their interactions with the impurity atom then cause a "transport" of fermions from majority to minority superposition states, whose numbers can be measured after applying another 3\pi/2 pulse. In particular, when the interaction of one component of fermions with the impurity atom is tuned close to a confinement-induced p-wave or higher partial-wave resonance, the resulting conductance is shown to exhibit the Kondo signature, i.e., universal logarithmic growth by lowering the temperature. The proposed transport measurement will thus provide a clear evidence of the orbital Kondo effect accessible in ultracold atom experiments and pave the way for developing new insights into Kondo physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.