Abstract
SummaryThe motivation of this work is to address real‐time sequential inference of parameters with a full Bayesian formulation. First, the proper generalized decomposition (PGD) is used to reduce the computational evaluation of the posterior density in the online phase. Second, Transport Map sampling is used to build a deterministic coupling between a reference measure and the posterior measure. The determination of the transport maps involves the solution of a minimization problem. As the PGD model is quasi‐analytical and under a variable separation form, the use of gradient and Hessian information speeds up the minimization algorithm. Eventually, uncertainty quantification on outputs of interest of the model can be easily performed due to the global feature of the PGD solution over all coordinate domains. Numerical examples highlight the performance of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.