Abstract
Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an electrode, which substitutes for the natural redox partner. In this technique, the electrical current flowing through the electrode is proportional to the catalytic activity of the enzyme. However, in most cases, the amount of enzyme molecules contributing to the current is unknown and the absolute turnover frequency cannot be determined. Here, we observe the formation of electrocatalytically active films of E. coli hydrogenase 1 by rotating an electrode in a sub-nanomolar solution of enzyme. This process is slow, and we show that it is mass-transport limited. Measuring the rate of the immobilization allows the determination of an estimation of the turnover rate of the enzyme, which appears to be much greater than that deduced from solution assays under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.