Abstract

Ultrathin porous materials, such as zeolite nanosheets, are prominent candidates for performing catalysis, drug supply, and separation processes in a highly efficient manner due to exceptionally short transport paths. Predictive design of such processes requires the application of diffusion equations that were derived for macroscopic, homogeneous surroundings to nanoscale, nanostructured host systems. Therefore, we tested different analytical solutions of Fick’s diffusion equations for their applicability to methane transport into two different zeolite nanosheets (AFI, LTA) under instationary conditions. Transient molecular dynamics simulations provided hereby concentration profiles and uptake curves to which the different solutions were fitted. Two central conclusions were deduced by comparing the fitted transport coefficients. First, the transport can be described correctly only if concentration profiles are used and the transport through the solid–gas interface is explicitly accounted for by the surfac...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.