Abstract

We study the transport properties of nonautonomous chaotic dynamical systems over a finite-time duration. We are particularly interested in those regions that remain coherent and relatively nondispersive over finite periods of time, despite the chaotic nature of the system. We develop a novel probabilistic methodology based upon transfer operators that automatically detect maximally coherent sets. The approach is very simple to implement, requiring only singular vector computations of a matrix of transitions induced by the dynamics. We illustrate our new methodology on an idealized stratospheric flow and in two and three-dimensional analyses of European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.